Kinetic model of carbonate dissolution in Martian meteorite ALH84001
نویسنده
چکیده
The magnetites and sulfides located in the rims of carbonate globules in the Martian meteorite ALH84001 have been claimed as evidence of past life on Mars. Here, we consider the possibility that the rims were formed by dissolution and reprecipitation of the primary carbonate by the action of water. To estimate the rate of these solution-precipitation reactions a kinetic model of magnesite-siderite carbonate dissolution was applied and used to examine the physico-chemical conditions under which these rims might have formed. The results indicate that the formation of the rims could have taken place in <50 years of exposure to small amounts of aqueous fluids at ambient temperatures. Plausible conditions pertaining to reactions under a hypothetical ancient Martian atmosphere (1 bar CO 2), the modern Martian atmosphere (8 mbar CO 2), and the present terrestrial atmosphere (0.35 mbar CO 2) were explored to constrain the site of the process. The results indicated that such reactions likely occurred under the latter two conditions. The possibility of Antarctic weathering must be entertained which, if correct, would imply that the plausibly biogenic minerals (single-domain magnetite of characteristic morphology, and sulfide) reported from the rims may be the products of terrestrial microbial activity. This model is discussed in terms of the available isotope data and found to be compatible with the formation of ALH84001 rims. Particularly, anticorrelated variations of radiocarbon with δ 13 C indicate that carbonate in ALH84001 was affected by solution-precipitation reactions immediately after its initial fall (ca. 13,000 ago) and then again during its recent exposure prior to collection.
منابع مشابه
A search for endogenous amino acids in martian meteorite ALH84001.
Trace amounts of glycine, serine, and alanine were detected in the carbonate component of the martian meteorite ALH84001 by high-performance liquid chromatography. The detected amino acids were not uniformly distributed in the carbonate component and ranged in concentration from 0.1 to 7 parts per million. Although the detected alanine consists primarily of the L enantiomer, low concentrations ...
متن کاملearch for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001
Fresh fracture surfaces of the martian meteorite ALH84001 contain abundant polycyclic aromatic hydrocarbons (PAHs). These fresh fracture surfaces also display carbonate globules. Contamination studies suggest that the PAHs are indigenous to the meteorite. High-resolution scanning and transmission electron microscopy study of surface textures and internal structures of selected carbonate globule...
متن کاملSearch for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001.
Fresh fracture surfaces of the martian meteorite ALH84001 contain abundant polycyclic aromatic hydrocarbons (PAHs). These fresh fracture surfaces also display carbonate globules. Contamination studies suggest that the PAHs are indigenous to the meteorite. High-resolution scanning and transmission electron microscopy study of surface textures and internal structures of selected carbonate globule...
متن کاملEvidence for a Second Generation of Magnesite in Martian Meteorite Allan
Introduction: Single-stage formation mechanisms for carbonate and other secondary minerals in ALH84001 are rapidly being revised to include multiple stages of carbonate growth and later thermal and mechanical events including alteration [1-9]. In an effort to confirm some of these more complex histories we have been studying carbonate-bearing regions within this meteorite. Magnesitic carbonates...
متن کاملTruncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures.
McKay et al. [(1996) Science 273, 924-930] suggested that carbonate globules in the meteorite ALH84001 contained the fossil remains of Martian microbes. We have characterized a subpopulation of magnetite (Fe(3)O(4)) crystals present in abundance within the Fe-rich rims of these carbonate globules. We find these Martian magnetites to be both chemically and physically identical to terrestrial, bi...
متن کامل